CONCLUSIONS
β1-induced HASM light chain (MLC) phosphorylation were determined by immunoblot. Intracellular calcium ([Ca2+]lumen area using a live-feed microscope and an Image Pro-Plus software macro. Isolated and directly induces HASM shortening and AHR through Smad2/3 activation.

RATIONALE
TGF-ß1 - an important mediator of airway structural alterations exists is controversial. Rho-associated kinase (ROCK) mediates calcium mobilization in response to Y27632, or asthma subjects compared to non-asthma HASM cells.

Hypothesis
Emax changes in ROCK and total in asthma HASM and may serve as a new therapeutic target in Bronchoconstriction.

Summary
• TGF-ß1 induces basal and agonist-induced HMSC bronchoconstriction
• TGF-ß1 augments basal and agonist-induced HASM cell shortening, MLC phosphorylation, and ROCK activation
• TGF-ß1 augments agonist-induced (Ca2+), mobilization with little effects on basal (Ca2+)
• Smad2/3 knockdown decreases TGF-ß1-induced MLC phosphorylation and ROCK activation in HASM cells

REFERENCES

ACKNOWLEDGEMENTS
These studies were supported by a NIH Predoctoral Training Grant in Pharmacology (5-T32-GM07752-20), NIH (R01-HL123702) and CEET center grant P30-ES013508.